IJoRCE Cek Akhir ID 97

by IJoRCE MEP

Submission date: 31-Aug-2024 07:48AM (UTC+0700)

Submission ID: 2502051075

File name: 05_iJORCE_Naya_Andita_65-72_Rev.docx (328.16K)

Word count: 4514

Character count: 28163

Vol 02, No 02, 65-73 https://doi.org/10.58706/ijorce ijorce.mep@gmail.com

Elasticity in Daily Life: A Potential Topics in Learning Physics

Naya Andita ^{1,*}, Liya Salsabila ¹, Mutiara Rindi Rahmadani ¹, Tia Ayu Nafi Pratama ¹, Husni Mubarak ², Fitriana ¹, and Nurita Apridiana Lestari ¹

¹ Prodi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya
² National Taiwan University of Science and Technology, Taiwan

Email: fitrianafitriana@unesa.ac.id

Abstract

As a branch of natural science, physics explores the fundamental properties of matter and energy 131 d their interactions. This study specifically examines the concept of elasticity—the ability of an object to return to its original shape after removing an external force—and equilibrium, which are crucial in understanding various physical phenomena. The research aims to highlight the practical applications of elasticity and equilibrium principles in daily life across multiple fields. Additionally, it seeks to underscore the importance of physics education in preventing misconceptions about these fundamental concepts. The findings suggest that effectively applying elasticity and equilibrium principles can enhance problem-solving in everyday scenarios. However, there is a critical need to improve physics education, particularly in literature and practical simulations, to mitigate common misconceptions and enhance understanding.

Keywords: Elasticity and physics learning

Manuscript History

Received: 28 May 2024 Revised: 18 June 2024 Accepted: 30 August 2024

How to cite:

Andita, N, et al. (2024). Physics Application of Elasticity and Equilibrium in Daily Life. *International Journal of Research and Community Empowerment*, 2(2), 65-73. DOI: https://doi.org/10.58706/ijorce.v2n2.p65-73.

INT ODUCTION

Physics is a branch of natural science that focuses on the fundamental properties of matter, energy, and their interactions. Physics is also defined as science derived from the systematic observation of nature, which studies mechanical physics, particularly elasticity and equilibrium (Sari, 2017). The "Physics and its Role in Life" section explores the broad scope of physics, its various branches, and its significance in everyday life. It aims to enhance understanding of the complexity of the universe and its components, which will ultimately deepen appreciation of the Creator of the universe (Desilva, 2020). Rapid technological advances are closely linked to physics principles, as fields such as information technology, electronics, medicine, and transportation require a solid understanding of the concepts (Soekarman, 2021). One branch of physics that explains the ability of an object 13 change shape after being applied a force but returning to its original shape when the force is removed is elasticity.

Elasticity refers to the ability of an object to return to its original shape after an external force is removed. When force is applied to an elastic material, its shape will change (Lusiana, 2017). Examples of everyday life are springs and rubber, which usually experience an increase in length. However, there is a limit to the force that can be applied in these examples. A rubber band can break if the stretching force exceeds its elasticity limit. However, a spring will not return to its original shape if stretched too far (Hasanah, 2016). Thus, elastic materials have elasticity limits. Elasticity plays an essential role in maintaining both static and dynamic balance. In static balance, elasticity ensures that objects can return to their original shape after being subjected to a force without permanent deformation. In dynamic balance, elasticity allows objects to respond to forces in a way that supports stability and control during movement (Rahayu, 2017). Understanding this relationship can be more easily applied in physics learning.

Learning physics using real examples and modern technology can increase students' interest in learning and understanding (Kanza, 2020). For example, clay and plasticine, when pressed, will change shape. But it cannot return to its original shape after the pressure is released (Harefa, 2021). When a force deforms a solid, its particles resist the change in shape, creating a reaction force that helps maintain its original shape. All the forces acting on the object must be balanced so the resultant force is equal to zero. Another example of application is in springs used in vehicle suspension systems. The spring absorbs shock and returns to its initial position, ensuring the vehicle remains stable on uneven road surfaces. If the applied force is below the elastic limit, the object will return to its original shape after removing the force to maintain balance. This opposing force is called elastic (Hidayati, 2016). However, this research is urgent about the critical role of physics in everyday life in the context of elasticity and balance. Thus, this research aims to improve the understanding of the principles of elasticity.

METHOD

The research methodology employed in this study involved a systematic approach to gather and analyze data on equilibrium and elasticity from reputable scientific sources (Baruqi, 2009).

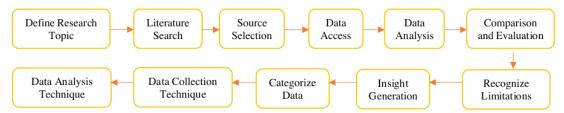


Figure 1. Interactive model qualitative analysis step chart

Based on Figure 1, the research steps started with determining the topic by identifying the research focus and emphasizing the principles of equilibrium and elasticity in physics. Next, a comprehensive literature search was conducted with relevant keywords (e.g., "equilibrium," "elasticity," and "mechanical analysis") to find suitable journal articles and studies. The selected articles had to be from reputable journals using experimental methodologies relevant to the research objectives. Then, data was accessed through institutional subscriptions to download the required articles and data. The data was analyzed by recording the experimental setup, measurement instruments, and results from the elastic test pieces and mechanical systems. The analyzed data were compared with the research objectives to assess relevance and suitability while considering variations in experimental methods.

Recognize potential research limitations by being identified, including measurement uncertainties and variations in experimental conditions that may affect data validity. Insights into equilibrium behavior and elasticity in physical systems resulted from the data analysis, which served as the analytical basis for further interpretation. Finally, the data is categorized as primary data by classifying the data.

RESULTS AND DISCUSSION

Table 1 provides a list of various national and international research journals focused on the applications of elasticity in everyday life.

Tabel 1. List of scientific research of elasticity in daily life.

No	Journal	Journal Review Results
1	Souisa (2011)	The journal findings indicate that tensile tests
	The Analysis of Modulus of Elasticity and Poisson Number	on iron, brass, and alloy steel materials reveal
	using the Pull Test (Analisis Modulus Elastisitas dan Angka	that when each material is stretched, it
	Poisson Bahan Dengan Uji Tarik)	elongates and narrows in width, with the
	Jurnal Barekeng, 5(2), 9-14	percentage of width reduction proportional to
		the percentage of elongation. This relationship
		is defined by the Poisson's ratio, which differs
		for each material: iron has a Poisson's ratio of
		0.106 ± 0.002 , brass 0.104 ± 0.002 , and
		annealed alloy steel 0.103 ± 0.005. The higher

No	Journal	Journal Review Results
		Poisson's ratio in iron suggests greater elasticity compared to brass and alloy steel, with differences also attributed to each material's unique composition and response to tensile forces. Additionally, the study focuses on tensile testing only, applying force until the material fractures, which provides quantitative data on elasticity, elastic limits, and ultimate tensile strength, as well as determining the modulus as a measure of stress-strain proportionality (Souisa, 2011).
2	Hidayati F, Akhsan H, & Syuhendri (2016) Students Grade X Misconceptions Identification on the Material of Elasticity and Hooke's Law at State Senior 17gh School 1 Indralaya (Identifikasi Miskonsepsi Siswa Kelas X pada Materi Elastisitas dan Hukum Hooke di SMA Negeri 1 Indralaya) Jurnal Inovasi dan Pembelajaran Fisika, 3(2), 3838 https://ejournal.unsri.ac.id/index.php/jipf/article/view/3838	The study identified several misconceptions among 35 tenth-grade science students at SMA Negeri 1 Indralaya regarding elasticity and Hooke's Law. Data collection involved a test of 15 multiple-choice questions on these concepts, accompanied by a Certainty of Response Index (CRI) on a six-point scale (0-5). Results showed a relatively low average score of 41.9, with 51.05% of students requiring clarification, 8.38% struggling with comprehension, and 40.57% understanding the concepts. The misconceptions included beliefs that energy can appear or disappear, compressed springs have less elastic energy, elastic objects lack an elastic limit, the elastic modulus measures a material's ability to return to its original shape, and objects with greater bending strength have a higher elastic modulus (Hidayati et al, 2016).
3	Akmam (2002) Elasticity Parameters Determination of Igneous Rocks and Their Geophysical Aspects Using Sonic Viewer Instrument (Penentuan Parameter Elastisitas Batuan Beku Dan Aspek Geofisikanya Menggunakan Instrumen Sonic Viewer) Project Report. Padang: FMIPA UNP, Padang.	The study found that the water absorption of igneous rocks in Andalas is generally higher than in Pasir Laweh, with the exception of phaneritic diorite rocks. The Poisson's ratio values obtained range from 0.30 ± 0.01 to 0.41 ± 0.02 , while the Lame constant (rigidity modulus) values range from 2.98×10^{0} Pa to 1.30×10 Pa. Instrumental methods were used to determine the elasticity parameters of various phaneritic rock types in Tanah Datar Regency (Akmam, 2002).
4	Baruqi M S, Sholihah S Z, Sugiharto A, Martonio B C, Sulthoni A, Supriyanto D, Kusuma K N, Aini A N, Tambun D 11 Suryaningrum W. (2009) Measurement of Tensile Strength, Compressive Strength 11 Modulus of Elasticity of Solids (Pengukuran Tensile Strength, Compressive Strength dan Modulus Elastisitas Benda Padat) Surabaya: Universitas Airlangga.	The results indicate that as stress increases, strain also increases, shown by the blue line on the graph. This line illustrates PVC remaining in the elastic region initially, where it can still stretch, before moving into the plastic region, where it can no longer return to its original shape. Using the regression graph depicting the stress-strain relationship, the elastic modulus of PVC was calculated, resulting in a regression equation of y = 0.082x. Consequently, the elastic modulus of the test material is determined to be 0.082 kN/m² by differentiating the regression equation. This experiment effectively 11 asures mechanical properties such as tensile strength, compressive strength, and the modulus of elasticity. In particular, tensile strength defines the force needed to break or

No	Journal	Journal Review Results
		damage the material, allowing the relationship between stress, strain, and the modulus of elasticity of PVC to be clearly understood. This method proves to be both practical and efficient (Baruqi and Sholihah, 2019).
5	Soekarman (2021) Implementation of Physics Learning on the Topic of Elasticity Through Inquiry Based Learning at SMA Negeri 100nggo (Impementasi Pembelajaran Fisika Pokok Bahasa Elastisitas Melalui Inquiry Bas 14 Learning di SMA Negeri 2 Donggo) Jurnal Pedagogy: Jurnal Penelitian dan Pengembangan Pendidikan, 8(2), 197-209 https://doi.org/10.33394/jp.v8i2.3521	The study results indicate that learning in schools can effectively incorporate an inquiry-based approach or problem-solving method. The inquiry model, a cognitive learning approach commonly used in science education, encourages small group learning to enhance knowledge, critical thinking, attitudes, and communication skills (Joyce et al., 2000). Wenning (2011) outlines 6e stages of inquiry learning, including discovery learning, interactive demonstrations, inquiry lessons, inquiry labs, and hypothetical inquiry, collectively known as the inquiry spectrum. This approach helps students develop a range of intellectual and scientific skills and now includes real-world applications involving authentic proble 1-solving at the chapter's end. Specifically, the inquiry learning process on Elasticity and Hooke's Law, using the Hooke's Law Physics learning unit from P4TK IPA, was successfully implemented, with 100% of students achieving complete mastery
6	Primavera I R C and Suwarna I P (2014) The Effect of Audio-Visual Media (Video) on Student Learning Outcomes of Class XI on the Concept of 18 ticity) (Pengaruh Media Audio-Visual (Video) terhadap Hasil Belajar Siswa Kelas XI pada Konsep Elastisitas) Prosiding Seminar Nasional Pendidikan IPA, FITK UIN Syarif Hidayatullah Jakarta	(Soekarman, 2021). The study's findings indicate that, based on pretest data, the experimental class had an average score of 22.96, while the control class averaged 23.55, showing no significant difference in initial learning outcomes on the concept of elasticity, as evidenced by the homogeneity test. After different instructional treatments, the experimental class, which used audio-visual media (videos), achieved a higher average score of 65.82 compared to the control class's 57.68. With a calculated t-value of 2.41 exceeding the t-table value of 1.99, this result suggests that audio-visual media significantly impacted student learning outcomes. This conclusion is further supported by an 8.73-point improvement in the experimental class's posttest scores over the control class, underscoring the effectiveness of audio-visual media in enhancing understanding (C2), application (C3), and analysis (C4). Conversely, conventional teaching in the control class primarily improved recall (C1), with students responding positively to audio-visual learning (Primavera and Suwarna, 2014).
7	Kristanti, Sulistiawati S D, & Saeri. (2023) Application of Olive Oil on Skin Elasticity in Hemodialysis Patients with Impaired Tissue Integrity	The study results indicate that, based on pretest and post-test data from the Numerical Rating Scale (NRS) pruritus itch dimension questionnaire, the total pre-test score of 25 categorized the patient's pruritus as severe,

No	.Journal	Journal Review Results
110	Penerapan Pemberian Minyak Zaitun Terhadap Elastisitas	with scores for itching duration (5), itching
	Kulit pada Pasien Hemodialisa dengan Gangguan Integritas	intensity (2), itching development (3),
	Jaringan	disruption of activities (5), and itching
	Jurnal Ilmiah Mahasiswa Surabaya, 4(2), 1-13	location (10). After applying olive oil twice
	Juliai Illiai Walasiswa Surabaya, 4(2), 1-15	daily for three days, the post-test scores
		showed a total of 23, re-categorizing pruritus
		as moderate, with slight improvements in
		itching development, disruption of activities,
		and itching location. This data suggests that
		olive oil may reduce pruritus levels in chronic
		kidney failure patients undergoing
		hemodialysis and also improve skin elasticity
8	Laka I M (2021)	and tissue integrity (Kristanti et al, 2023).
8	Loko I M (2021)	The research was conducted in two cycles,
	Improving Learning Outcomes of Elasticity of Objects and	Cycle I and Cycle II, each consisting of three
	Hooke's Law Through Experimental Methods Base on	meetings. These cycles aimed to evaluate the
	Cooperative Learning in Students of Class XI IPA 3 SMA	success of students in learning physics
	Negeri 1 Tegallalang	through experimental methods based on
	(Peningkatan Hasil Belajar Elastisitas Benda dan Hukum	cooperative learning. At the end of each cycle,
	Hooke Melalui Metode Eksperimen Berbasis Pembelajaran	evaluations and reflections were conducted to
	Kooperatif pada Siswa Kelas XI IPA 3 SMA Negeri 1	assess the improvement in students' physics
	Tegallalang)	learning outcomes. Prior to the cycles, regular
	https://doi.org/10.46444/suluh-pendidikan.v19i1.239	learning sessions were conducted, followed
		by an evaluation test to gauge students' initial
		physics knowledge, serving as a benchmark
		for comparing their progress during the action
		cycles. The analysis of the data revealed that
		implementing the experimental method based
		on cooperative learning significantly
		enhanced students' understanding of object
		elasticity and Hooke's law, highlighting the
		importance of this approach in improving
		physics learning outcomes (Loko, 2021).
9	Soekarman (2021)	The study investigated the learning process of
	Implementation of Physics Learning on Elasticity through	elasticity material through a Hooke's Law
	Inquiry-Based Inrning at SMA Negeri 2 Donggo	unit, employing an inquiry-based model
	(Implementasi Pembelajaran Fisika Pokok Bahasan	across six levels. Conducted over three
	Elastisitas Melalui Inquiry Based Learning di SMA Negeri 2	meetings of four lesson hours each within one
	Donggo) 14	week, the research utilized a descriptive
	Jurnal Paedagogy: Jurnal Penelitian dan Pengembangan	method that included observations,
	Pendidikan, 8(2), 197-209	interviews, and tests, analyzed quantitatively.
	https://doi.org/10.33394/jp.v8i2.3521	The findings indicated that the inquiry
		learning process for elasticity and Hooke's
		Law, utilizing physics learning units, was
		highly effective, achieving a 100%
		completion rate in student learning outcomes
	15	(Soekarman, 2021).
10	Kogout and Etsion (2002)	The journal results indicate that the analysis of
	Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat	the elastic-plastic contact model between a
	Journal of Applied Mechanics, 69(5), 657-662	deformable sphere and a rigid plane,
	https://doi.org/10.1115/1.1490373	conducted using the finite element method,
		identifies three distinct stages of contact
		evolution, transitioning from fully elastic to
		fully plastic. This study enhances our
		understanding of elastic-plastic contact and
		reveals significant differences when
		compared to previous models that relied on
		arbitrary assumptions, underscoring the
		superiority of the presented model in
		superiority of the presented model in

No	Journal	Journal Review Results
		accurately describing elastic-plastic sliding
11	Sari M I S and Budiningarti (2017)	contact (Kogout and Etsion, 2002). The study employed one experimental class
11	Application of Beach Ball Typ3 Class Discussion Learning	and two replication classes that received the
	Model as an Effort to Improve Learning Outcomes of Class	same treatment, leading to an improvement in
	X Students of SMA Negeri 2 Mejayan on the Subject of	student learning outcomes, implementation,
	Insticity	and responses after applying the Beach Ball
	(Penerapan Model Pembelajaran Diskusi Kelas Tipe Beach	type classroom discussion model to elasticity
	Ball sebagai Upaya Meningkatkan Hasil Belajar Peserta	material. Utilizing a pre-experimental design
	Didik Kelas X SMA Negeri 2 Mejayan pada Pokok Bahasan Elastisitas)	with a one-group pre-test and post-test framework, the research analyzed students'
	Jurnal Inovasi Pendidikan Fisika (JIPF), 6(3), 175-180	pre-test and post-test scores using the paired t-
		test and gain index. The rest indicated a
		significant enhancement in students' learning
		outcomes, with a significance level of 5%,
		following the implementation of the Beach
		Ball discussion model, as all three classes consistently demonstrated improved learning
		outcomes (Sari and Budianingarti, 2017).
12	8 llfikar (2017)	The journal results indicate that GFRP
	Experimental Analysis of Elastic Modulus of Glass Fiber	composites are among the most widely used
	Reinforced Plastic (GFRP) Composite Material Based on	alternative materials to metal due to their
	Fiber Diameter Variation Due to High Strain Rate Impact	lightweight nature, ease of shaping, good
	I 10 d	strength, and relatively low productio 8 costs. This study examines how variations in fiber
	(Analisa Eksperimental Modulus Elastisitas Bahan Komposit Glass Fiber Reinforced plastic (GFRP) Berdasarkan Variasi	diameter affect the mechanical behavior of
	Diameter serat Akibat Beban Impak Laju Regangan Tinggi)	GFRP composites, particularly und 8 high-
	Journal of Mechanical Engineering, Manufactures, Materials	impact strain rates, utilizing impulse-
	and Energy (JMEMME), 1(2), 47-56	momentum theory in the elastic region as the
		foundational science. AGC equipment was
		employed for testing, as it generates high
		strain wave rates in unidirectional loading. The laminated composite structure, which
		consists of long chopped-strand glass fiber
		sheets, demonstrates elastic properties that are
		isotropic on a macrostructural level. The study
		findings reveal a relationship between stress
		propagation along the specimen and time (t),
		highlighting the material's resistance to deformation in response to applied impact
		loads (Zulfikar, 2017).
13	Lusiana Y 3 Yushardi, and Sudarti (2017)	This research employed a posttest-only
	Learning Elasticity and Hooke's Law with Guided	control group design at SMA Negeri 1
	Discovery 3 earning Model at SMA Negeri 1 Jenggawah	Jenggawah during the odd semester of
	(Study on Critical Thinking Skills and Student Learning 12tivation)	2016/2017. Samples were selected using cluster random sampling, designating XI IPA
	Pembelajaran Materi Elastisitas dan Hukum Hooke dengan	3 as the control class and XI IPA 4 as the
	Model Pembelajaran Guided Discovery di SMA Negeri 1	experimental class. Data were gathered
	Jenggawah (Studi pada Keterampilan Berpikir Kritis dan	through tests on critical thinking skills,
	Motivaasi Belajar Siswa)	observations of learning motivation,
	3 rnal Pembelajaran Fisika Univeritas Jember, 6(1), 65-71	interviews with teachers and students, and
	https://jurnal.unej.ac.id/index.php/JPF/article/view/4659/3416	learning documentation. An independent sample t-test was conducted using SPSS 22
		for data analysis, where $p > 0.05$ indicated no
		significant difference, while $p \le 0.05$
		suggested that the experimental cass
		performed better. The findings revealed that
		the guided discovery learning model had a
		significant positive impact on critical thinking

No	No Journal Journal Review Results			
		skills and student learning motivation		
		concerning elasticity and Hooke's law at SMA		
	17	Negeri 1 Jenggawah (Lusiana et al, 2017).		
14	Budi E, Budi A S, Fitri U R, Aprilia R, & Andriyani D (2021)	The objective was to explore the spring		
	\$17dy of Spring Constant Properties and Elastic Modulu	constant's value and its correlation with the		
	(Kajian Sifat Tetapan Pegas dan Modulus Elastisitas)	elastic properties of the spring material,		
	Jurnal Pengabdian Masyarakat Sains dan Aplikasinya	represented by the modulus of elasticity. Two		
	(JPMSA), 1(1), 6-11	springs, made from the same material and		
	https://journal.unj.ac.id/unj/index.php/jpm-	measuring 6.8 cm in length but differing in		
	sains/article/view/18248	diameter (spring 1 with a diameter of 0.8 cm		
		and spring 2 with a diameter of 1.0 cm), were		
		used. The results revealed that despite being		
		made of the same material, the springs had		
		different spring constants, with average values		
		of 8.561 N/m for spring 1 and 4.432 N/m for		
		spring 2. According to Hooke's law, the spring		
		constant is directly proposional to the		
		modulus of elasticity and inversely		
		proportional to the length of the material. Both		
		springs shared the same geometric length but		
		varied in diameter, with the smaller diameter		
		spring exhibiting a larger spring constant		
		(Budi et al. 2021).		

According to data and analysis, the application of physics in equilibrium and elasticity offers numerous advantages, facilitating the resolution of various problems and demonstrating significant effectiveness, as noted. In the sub-chapter titled "Physics and Its Role in Life," the extensive scope of physics, its branches, and its role in daily life are explored. This research illustrates that the principles of elasticity can assist individuals in determining the stress and strain values of materials and in identifying the parameters of elasticity. A literature review yielded 14 research articles focusing on the application of physics in elasticity and equilibrium in everyday life, categorized into areas such as health, beauty, and material usage. Research findings from Souisa M (2011), Akmam (2002), Baruai et al. (2019), and Kristanti et al. (2023) highlight how the principle of physical elasticity can be applied to assess the elasticity of materials for practical daily uses, such as testing moisture in health or beauty products. Low skin elasticity can lead to issues such as dryness and cracking. Similarly, in construction, if elasticity and equilibrium deviate from initial calculations, it may result in structural failures or accidents, including electrical shocks.

Hidayati et al. (2016), Soekarman (2021), Primavera and Suwarna (2014), and Loko (2021) have discussed the materials utilized in experiments, particularly focusing on their mechanical properties. These studies underscore the necessity of analyzing elastic modulus and Poisson's ratio through tensile testing, which provides comparative values of Poisson's ratio across different materials. This aligns with the research conducted by Kogut and Etsion (2002) and Budi et al. (2021), which emphasize the importance of understanding properties such as the spring constant and Young's modulus. A solid grasp of these concepts helps researchers avoid misunderstandings or misconceptions during experimental procedures. Consequently, thoroughly reviewing the theoretical foundation before undertaking research is crucial to ensure a smooth research process and produce accurate, relevant results aligned with established theories. This meticulous examination of material characteristics further ensures that researchers can interpret data correctly, thereby yielding more valid research outcomes.

Based on the findings from Sukarman (2021), Sari and Budiningarti (2017), and Lusiana et al. (2017), various learning models such as inquiry-based learning, beach ball-type class discussions, and guided discovery were employed. The implementation of these instructional methods has proven effective for teaching elasticity in physics, significantly enhancing student learning outcomes. The widespread applications of elasticity concepts in everyday life enable students to effectively assess their mastery and comprehension of the subject. Elastic materials hold considerable potential for everyday use.

CONCLUSION

This article emphasizes the importance of physics in everyday life, particularly in understanding the concepts of elasticity and equilibrium. As a branch of natural science, physics explains the interactions between matter and energy, which are highly relevant across various fields, such as information technology, medicine, and construction. Research indicates that the principles of elasticity can be utilized to determine the stress and strain values of materials and to identify elasticity parameters applicable in daily life, such as in the testing of health and beauty products. Furthermore, the various studies analyzed reinforce that understanding the mechanical properties of materials, such as elastic modulus and Poisson's ratio, is crucial for preventing errors in experimental procedures. The emphasis on effective teaching methods, such as inquiry-based learning and discussions, has also been found to enhance student learning outcomes in grasping the concept of elasticity. Overall, a solid understanding of elasticity and equilibrium can assist individuals in addressing practical everyday problems while reinforcing the theoretical foundations that underpin scientific research.

REFERENCES

- Akmam. (2002). Penentuan Parameter Elastisitas Batuan Beku dan Aspek Geofisikanya Menggunakan Instrumen Sonic Viewer. *Project Report*. Padang: FMIPA UNP, Padang.
- Baruqi, M. S., Sholihah, S. Z., Sugiharto, A., Martonio, B. C., Sulthoni, A., Supriyanto, D., Kusuma, K. N., Aini, A.N., Tambun, D.L., & Suryaningrum, W. (2009). Pengukuran Tensile Strength, Compressive Strength Dan Modulus Elastisitas Benda Padat. Surabaya: Universitas Airlangga.
- Budi, E., Budi, A.S., Fitri, A.R., Aprilia, R., & Andriani, D. (2021). Kajian Sifat Tetapan Pegas dan Modulus Elastisitas. *Jurnal Pengabdian Masyarakat Sains dan Aplikasinya*, **1**(1), 6-11. https://journal.unj.ac.id/unj/index.php/jpm-sains/article/view/18248
- Desilva, D., Sakti, I., & Medriati, R. (2020). Pengembangan Instrumen Penilaian Hasil Belajar Fisika Berorientasi Hots (Higher Order Thinking Skills) Pada Materi Elastisitas Dan Hukum Hooke. *Jurnal Kumparan Fisika*, 3(1), 41–50. DOI: https://doi.org/10.33369/jkf.3.1.41-50
- Harefa, D. P. & Gumay, O. P. U. (2021). Pengembangan Buku Ajar Fisika Berbasis Problem Based Learning pada Materi Elastisitas dan Hukum Hooke. SJPIF: Silampari Jurnal Pendidikan Ilmu Fisika, 3(1), 1-14. DOI: https://doi.org/10.31540/sjpif.v3i1.1044
- Hasanah, N., Suyanto, E., & Suana, W. (2016). E-Learning dengan Schoology sebagai Suplemen Pembelajaran Fisika Materi Elastisitas dan Hukum Hoooke. *Jurnal Pembelajaran Fisika*, **4**(2), 71-81. https://jurnal.fkip.unila.ac.id/index.php/JPF/article/view/11106
- Hidayati, F., Akhsan, H., & Syuhendri. (2016). Identifikasi Miskonsepsi Siswa Kelas X Pada Materi Elastisitas dan Hukum Hooke di SMA Negeri 1 Indralaya. *Jurnal Inovasi dan Pembelajaran Fisika*, 3(2), 3838. https://ejournal.unsri.ac.id/index.php/jipf/article/view/3838
- Kanza, N.R.F., Lesmono, A.D., & Widodo, H.M. (2020). Analisis Keaktifan Belajar Siswa Menggunakan Model Project Based Learning Dengan Pendekatan STEM Pada Pembelajaran Fisika Materi Elastisitas Di Kelas XI MIPA 5 SMA Negeri 2 Jember. *Jurnal Pembelajarann Fisika (JPF)*, 9(2), 71-77. DOI: https://doi.org/10.19184/jpf.v9i1.17955
- Kogut, L. & Etsion, I. (2002). Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat. *Journal of Applied Mechanics*, 69(5), 657-662. DOI: https://doi.org/10.1115/1.1490373
- Kristanti, Sulistiawati, S.D., & Saeri. (2023). Penerapan Pemberian Minyak Zaitun Terhadap Elastisitas Kulit Pada Pasien Hemodialisa dengan Gangguan Integritas Jaringan. *Master Thesis*. Surakarta: Universitas Kusuma Husada.
- Loko, I.M. (2021) Peningkatan Hasil Belajar Elastisitas Benda Dan Hukum Hooke Melalui Metode Eksperimen Berbasis Pembelajaran Kooperatif Pada Siswa Kelas XI IPA 3 SMA Negeri 1 Tegallalang, Suluh Pendidikan: Jurnal Ilmu-Ilmu Pendidikan, 19(1), 85-98. DOI: https://doi.org/10.46444/suluh-pendidikan.v19i1.239
- Lusiana, Y. M., Yushardi., & Suhardi. (2017). Pembelajaran Materi Elastisitas dan Hukum Hooke Dengan Model Pembelajaran Guided Discovery di SMA Negeri 1 Jenggawah. *Jurnal Pembelajaran Fisika*, **6**(1), 65-71. https://jurnal.unej.ac.id/index.php/JPF/article/view/4659/3416
- Musdar. (2018). Pemetaan Konsep Fisika Siswa Kelas XI Pada Kurikulum 2013. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 4(1), 36-41. https://e-journal.unipma.ac.id/index.php/JPFK/article/view/1909
- Primavera, I.R.C. & Suwarna, I.P. (2014). Pengaruh Media Audio-Visual (Video) Terhadap Hasil Belajar Siswa Kelas XI Pada Konsep Elastisitas, Prosiding Seminar Nasional Pendidikan IPA FITK UIN Syarif Hidayatullah Jakarta. Jakarta: UIN Syarif Hidayatullah.

- Rahayu, S.D., Prihandono, T., & Gani, A. A. (2017). Pengembangan Modul Fisika Berbasis Concept Mapping Pada Materi Elastisitas Di SMA. *Jurnal Pembelajaran Fisika*, **6**(3), 247-254. https://jurnal.unej.ac.id/index.php/JPF/article/view/5319
- Sari, M. I. & Budiningarti, H. (2017). Penerapan Model Pembelajaran Diskusi Kelas Tipe Beach Ball sebagai Upaya Meningkatkan Hasil Belajar Peserta Didik Kelas X SMA Negeri 2 Mejayan pada Pokok Bahasan Elastisitas. *Jurnal Inovasi Pendidikan Fisika (JIPF)*, **6**(3), 175-180. https://ejournal.unesa.ac.id/index.php/inovasi-pendidikan-fisika/article/view/20277
- Soekarman, S. (2021). Implementasi Pembelajaran Fisika Pokok Bahasan Elastisitas Melalui Inquiry Based Learning di SMA Negeri 2 Donggo. *Jurnal Paedagogy*, 8(2), 197-209. https://e-journal.undikma.ac.id/index.php/pedagogy/article/view/3521
- Souisa, M. (2011). Analisis Modulus Elastisitas dan Angka Poisson Bahan dengan Uji Tarik. *Barekeng: Jurnal Ilmu Matematika dan Terapan*, **5**(2), 9-14.
- Sukmawaty, D. (2018). Analisis Deformasi Tanah Lunak Terhadap Perkuatan Geogrid Menggunakan Metode Eleme Hingga. Siimo Engineering: Journal Teknik Sipil, 2(1), 1-8. https://jurnal.unismuhpalu.ac.id/index.php/SiimoEngineering/article/view/443
- Vancraenenbroeck R & Hofmann H. (2023). Electrostatics and hydrophobicity in the dynamics of intrinsically disordered proteins. *The European Physical Journal E*, **46**(12), 133. DOI: https://doi.org/10.1140/epje/s10189-023-00383-7.
- Zulfikar, A.J. (2017). Analisa Eksperimental Modulus Elastisitas Bahan Komposit Glass Fiber Reinforced Plastic (GFRP) Berdasarkan Variasi Diameter Serat Akibat Beban Impak Laju Regangan Tinggi. Journal of Mechanical Engineering Manufactures Materials and Energy, 1(2), 47-56. https://ojs.uma.ac.id/index.php/jmemme/article/view/538

IJoRCE Cek Akhir ID 97

IJUK	CE CER AP	(IIII 1D 97			
ORIGIN	IALITY REPORT				
1 SIMIL	6% ARITY INDEX	16% INTERNET SOURCES	6% PUBLICATIONS	O% STUDENT PA	PERS
PRIMAF	RY SOURCES				
1	WWW.G r Internet Sour	rafiati.com			2%
2	Meta Ya Review: System	antika Agustinu antidewi, Utama Air Oxygen Lev ', International J mmunity Empov	Alan Deta. "Li el Monitoring ournal of Res	terature earch	2%
3	journal2 Internet Sour	2.uad.ac.id			1%
4	jurnal.ik Internet Sour	kipsaraswati.ac.i	d		1%
5	reposito	ory.uhamka.ac.id	k		1%
6	vdocum Internet Sour	nents.mx			1%
7	123dok				1%

		1 %
9	sinta3.ristekdikti.go.id Internet Source	1 %
10	www.sciencegate.app Internet Source	1 %
11	www.coursehero.com Internet Source	1 %
12	fisika.fkip.unej.ac.id Internet Source	1 %
13	www.education.com Internet Source	1 %
14	www.ejournals.umma.ac.id Internet Source	1 %
15	refubium.fu-berlin.de Internet Source	1 %
16	id.123dok.com Internet Source	1 %
17	jurnal.icjambi.id Internet Source	1 %
18	repository.upi.edu Internet Source	1 %
19	core.ac.uk Internet Source	1 %

Exclude quotes On Exclude matches < 1%

Exclude bibliography On